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•Goal:Safe navigation through unstructured outdoor environments

Key Insight: It is important to reason about semantics of the 
environment – terrain and obstacle recognition can improve 

planned path safety.
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Leverage SOTA image 
segmentation network

(Chen, et al. 2018)

Dataset:https://deepsemantichppc.github.io
•Filter unstructured scene categories for COCO
•Consolidate class categories for outdoor recognition
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(uncertainties not shown)
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1. Semantic point cloud with 
uncertainties (not shown)

2. Safe/unsafe regions 
from uncertainties

3. Compute multiple hypotheses (paths) 
with a variant of (Krusi et al. 2017)
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Validation

•Simulation to evaluate parameter trends
•Two real outdoor environments to 

evaluate real-world performance AirSim scene
(Shah, et al., (2017))

Images and reconstructions of local 
scenes using the ZED camera API



Experimental Results: Planned Path Safety
500 trials 
for each

• DeepSemanticHPPC (ours) is significantly better than (Krusi et al. 2017) (B1), and even a 
single NBV drastically improves performance. We conclude that semantic information is 
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• Our full pipeline with 5 NBVs (5N) achieves the best performance.
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Experimental Results: Uncertainty Reduction via NBV

For both scenes, the full NBV objective function consistently achieves the lowest 
uncertainty with 2 or more NBVs

number of NBV number of NBV
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Summary

•Novel framework for navigation through uncertain outdoor environments
•Reasoning about semantics and uncertainties allows safe paths to be planned.

•Multiple path hypotheses and next best views allows measurements of the 
environment to reduce uncertainty and improve safety.

•Significant improvement over baselines, even in seemingly simple real-world 
scenes.

Please refer to our paper for more details!

Dataset, pretrained model, and demo: https://deepsemantichppc.github.io


